資料4

【算出例(3)】(軟鋼及び 490N/mm² 級高張力鋼用ガスシ - ルドア - ク溶接用ソリッドワイヤの場合)

本算出例では,ヒュームについては移動量が把握できる場合は「土壌への排出及び廃棄物」,移動量が把握できない場合は「大気への排出」として,スラグ,スパッタ及び残材についてはすべて「廃棄物」として算出しています。

次のような溶接工程における排出量,移動量の算出方法の例を示します。 (設備の概要)

工程...溶接材料 DS1A, シ・ルドガス CO,を用いて溶接

使用原料...溶接材料 DS1A

溶接材料 DS1A の年間取扱量...100トン

溶接材料 DS1A に含まれる指定化学物質...マンガン及びその化合物(以下, Mn)

以下の算出例では,指定化学物質の含有率は該当銘柄のMSDS記載値をご利用ください。残材率,溶着金属への移行率及びヒュームへの移行率については,貴社でデータをお持ちでない場合,それぞれ別表1 1,別表1-2,別表2及び別表3を参考にしてください。ヒュームの土壌への排出率は貴社のデータをご使用ください。

溶接材料中の Mn 含有率...1.5%

溶接材料 DS1A の残材率...0.15%

溶接材料 DS1A の Mn の溶着金属への移行率...70%

溶接材料 DS1A のヒュ - ムの土壌への排出率...1%

溶接材料 DS1A の Mn のヒュ - ムへの移行率...3.5%

なお,以下の算出に記載してあるアルファベットは,「資料3 溶接工程用作業シート【算出例】」に示されているアルファベットに対応しています。

(1) 溶接材料 DS1A 中に含まれる指定化学物質の年間取扱量の算出

溶接材料 DS1A に含まれる指定化学物質の年間取扱量は、MSDS記載値より算出します。

(Mn の年間取扱量:F) = (溶接材料 DS1A の年間取扱量:D) × (Mn含有率:E) ÷ 100 = 100 トン/年 × 1,000kg/トン × 1.5% ÷ 100 = 1,500kg/年

(2) 残材中に含まれる指定化学物質の含有量

残材中に含まれる指定化学物質の含有量は,残材の成分が溶接材料と同一であり,残材率が上記の値であることから,次のように算出します。(別表1-1参照)

(残材中の Mn の廃棄物としての移動量:I) = (Mn の年間取扱量:F) × (溶接材料の残材率:H) ÷ 100 = 1,500kg/年 × 0.15% ÷ 100 = 2.25kg/年

(3) 指定化学物質の製造品としての搬出量の算出

溶接材料 DS1A の溶接により,溶着金属に固定される指定化学物質量は,残材中に含まれる指定化学物質量が(2)の値であり,さらに溶着金属への移行率が上記の値であることから,次のように算出します。(別表2参照)

(Mn の搬出量:K) = (Mn の年間取扱量 - 残材中の Mn の廃棄物としての移動量:F-I) × (Mnの溶着金属への移行率:J) ÷ 100 = (1,500kg/年 - 2.25kg/年) × 70% ÷ 100 = 1,048.43kg/年

(4) 指定化学物質のヒュ・ムとしての排出量及び移動量の算出

溶接材料 DS1A の溶接により, ヒュ・ムとして移動及び排出される指定化学物質量は, 残材中に含まれる指定化学物質量が(2)の値であり, さらに各指定化学物質のヒュ・ムへの移行率が上記の値であることから, 次のように算出します。(別表3参照)

(Mn のヒュ - ムとしての移動量及び排出量:N) = (Mn の年間取扱量 - 残材中の Mn の廃棄物としての移動量:F-I) × (Mnのヒュームへの移行率:M) ÷ 100 = (1,500kg/年 - 2.25kg/年) × 3.5% ÷ 100 = 52.42kg/年

(5) 指定化学物質の環境への排出量の算出

溶接材料,スラグ及び残材が液体状で漏洩,浸透されることはありません。また,ヒュームは溶接時には大気中に排出された後,冷却されて落下します。その後,集められたヒュームは廃棄物(粉じん)としての移動となり,地面に落下し放置されたヒュームは土壌への排出として算出します。

また,溶接材料,スラグ及びヒュ-ムが水域に廃棄されることはほとんどなく,また,水に溶け出すことがないため, 水域への排出量は 0kg/年となります。

(5A) ヒュ - ムの土壌への排出量及び廃棄物としての移動量が把握できる場合

指定化学物質がヒュ - ムとして土壌へ排出される量の算出は,溶接材料 DS1A の溶接により,ヒュ - ムとして移動及び排出される指定化学物質量が(4)の値であり,さらに,ヒュ - ムの土壌への排出率を 1%と仮定すると,次のように算出します。

(Mn のヒュ - ムとしての土壌への排出量: Q) = (Mn のヒュ - ムとしての移動量及び排出量: N) × (ヒュームの土壌への排出率: P) ÷ 100 = 52.42kg/年 × 1% ÷ 100 = 0.52kg/年

(5B) ヒュ・ムの土壌への排出量及び廃棄物としての移動量が把握できない場合

指定化学物質がヒュームとして土壌へ排出される量の算出は、ヒュームの土壌への排出率が把握できる場合には、(5A)のように算出します。しかしながら、一般的にヒュームの廃棄物としての移動量及び土壌への排出量を把握することは困難である場合が多く、またヒュームが一旦は大気へ排出されているので、ヒュームの全量(100%)を大気への排出として考え、(4)の算出値を大気への排出量とします。

(Mn のヒュ - ムとしての大気への排出量:S) = (Mn のヒュ - ムとしての移動量及び排出量:N) = 52.42kg/年

(6) 指定化学物質の廃棄物に含まれる量の算出

(6A) ヒュ・ムの土壌への排出量及び廃棄物としての移動量が把握できる場合

溶接において,溶着金属となり製造品として搬出される量及びヒュ - ムが土壌へ排出される量を除いては,全て廃棄物として,次のように算出します。

(Mn の廃棄物としての移動量:R) = (Mn の年間取扱量:F) - (Mn の搬出量:K) - (Mn のヒュ - ムとしての土壌への排出量:Q) = 1,500kg/年 - 1,048.43kg/年 - 0.52kg/年 = 451.05kg/年

資料4

(6B) ヒュ・ムの土壌への排出量及び廃棄物としての移動量が把握できない場合

溶接において、溶着金属となり製造品として搬出される量及びヒュームが大気へ排出される量を除いては、全て廃棄物として、次のように算出します。

(Mn の廃棄物としての移動量:T) = (Mn の年間取扱量:F) - (Mn の搬出量:K) - (Mn のヒュ - ムとしての移動量及び排出量:S) = 1,500kg/年 - 1,048.43kg/年 - 52.42kg/年 = 399.15kg/年

(7) 本工程における排出量,移動量の集計

- (7A) ヒュ ムの土壌への排出量及び廃棄物としての移動量が把握できる場合
 - ·Mn のヒュ ムとしての土壌への排出量:Z=Q=0.52 kg/年
 - ·Mnの廃棄物としての移動量: AA = R = 451.05kg/年
- (7B) ヒュ・ムの土壌への排出量及び廃棄物としての移動量が把握できない場合
 - ·Mn のヒュ ムとしての大気への排出量: AE = S = 52.42 kg/年
 - ·Mnの廃棄物としての移動量: AI = T = 399.15kg/年